Logo Search packages:      
Sourcecode: freecad version File versions  Download package

Wm4Matrix3.inl

// Wild Magic Source Code
// David Eberly
// http://www.geometrictools.com
// Copyright (c) 1998-2007
//
// This library is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation; either version 2.1 of the License, or (at
// your option) any later version.  The license is available for reading at
// either of the locations:
//     http://www.gnu.org/copyleft/lgpl.html
//     http://www.geometrictools.com/License/WildMagicLicense.pdf
// The license applies to versions 0 through 4 of Wild Magic.
//
// Version: 4.0.2 (2006/09/05)

//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::Matrix3 (bool bZero)
{
    if (bZero)
    {
        MakeZero();
    }
    else
    {
        MakeIdentity();
    }
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::Matrix3 (const Matrix3& rkM)
{
    m_afEntry[0] = rkM.m_afEntry[0];
    m_afEntry[1] = rkM.m_afEntry[1];
    m_afEntry[2] = rkM.m_afEntry[2];
    m_afEntry[3] = rkM.m_afEntry[3];
    m_afEntry[4] = rkM.m_afEntry[4];
    m_afEntry[5] = rkM.m_afEntry[5];
    m_afEntry[6] = rkM.m_afEntry[6];
    m_afEntry[7] = rkM.m_afEntry[7];
    m_afEntry[8] = rkM.m_afEntry[8];
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::Matrix3 (Real fM00, Real fM01, Real fM02, Real fM10, Real fM11,
    Real fM12, Real fM20, Real fM21, Real fM22)
{
    m_afEntry[0] = fM00;
    m_afEntry[1] = fM01;
    m_afEntry[2] = fM02;
    m_afEntry[3] = fM10;
    m_afEntry[4] = fM11;
    m_afEntry[5] = fM12;
    m_afEntry[6] = fM20;
    m_afEntry[7] = fM21;
    m_afEntry[8] = fM22;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::Matrix3 (const Real afEntry[9], bool bRowMajor)
{
    if (bRowMajor)
    {
        m_afEntry[0] = afEntry[0];
        m_afEntry[1] = afEntry[1];
        m_afEntry[2] = afEntry[2];
        m_afEntry[3] = afEntry[3];
        m_afEntry[4] = afEntry[4];
        m_afEntry[5] = afEntry[5];
        m_afEntry[6] = afEntry[6];
        m_afEntry[7] = afEntry[7];
        m_afEntry[8] = afEntry[8];
    }
    else
    {
        m_afEntry[0] = afEntry[0];
        m_afEntry[1] = afEntry[3];
        m_afEntry[2] = afEntry[6];
        m_afEntry[3] = afEntry[1];
        m_afEntry[4] = afEntry[4];
        m_afEntry[5] = afEntry[7];
        m_afEntry[6] = afEntry[2];
        m_afEntry[7] = afEntry[5];
        m_afEntry[8] = afEntry[8];
    }
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::Matrix3 (const Vector3<Real>& rkU, const Vector3<Real>& rkV,
    const Vector3<Real>& rkW, bool bColumns)
{
    if (bColumns)
    {
        m_afEntry[0] = rkU[0];
        m_afEntry[1] = rkV[0];
        m_afEntry[2] = rkW[0];
        m_afEntry[3] = rkU[1];
        m_afEntry[4] = rkV[1];
        m_afEntry[5] = rkW[1];
        m_afEntry[6] = rkU[2];
        m_afEntry[7] = rkV[2];
        m_afEntry[8] = rkW[2];
    }
    else
    {
        m_afEntry[0] = rkU[0];
        m_afEntry[1] = rkU[1];
        m_afEntry[2] = rkU[2];
        m_afEntry[3] = rkV[0];
        m_afEntry[4] = rkV[1];
        m_afEntry[5] = rkV[2];
        m_afEntry[6] = rkW[0];
        m_afEntry[7] = rkW[1];
        m_afEntry[8] = rkW[2];
    }
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::Matrix3 (const Vector3<Real>* akV, bool bColumns)
{
    if (bColumns)
    {
        m_afEntry[0] = akV[0][0];
        m_afEntry[1] = akV[1][0];
        m_afEntry[2] = akV[2][0];
        m_afEntry[3] = akV[0][1];
        m_afEntry[4] = akV[1][1];
        m_afEntry[5] = akV[2][1];
        m_afEntry[6] = akV[0][2];
        m_afEntry[7] = akV[1][2];
        m_afEntry[8] = akV[2][2];
    }
    else
    {
        m_afEntry[0] = akV[0][0];
        m_afEntry[1] = akV[0][1];
        m_afEntry[2] = akV[0][2];
        m_afEntry[3] = akV[1][0];
        m_afEntry[4] = akV[1][1];
        m_afEntry[5] = akV[1][2];
        m_afEntry[6] = akV[2][0];
        m_afEntry[7] = akV[2][1];
        m_afEntry[8] = akV[2][2];
    }
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::Matrix3 (Real fM00, Real fM11, Real fM22)
{
    MakeDiagonal(fM00,fM11,fM22);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::Matrix3 (const Vector3<Real>& rkAxis, Real fAngle)
{
    FromAxisAngle(rkAxis,fAngle);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::Matrix3 (const Vector3<Real>& rkU, const Vector3<Real>& rkV)
{
    MakeTensorProduct(rkU,rkV);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::operator const Real* () const
{
    return m_afEntry;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>::operator Real* ()
{
    return m_afEntry;
}
//----------------------------------------------------------------------------
template <class Real>
const Real* Matrix3<Real>::operator[] (int iRow) const
{
    return &m_afEntry[3*iRow];
}
//----------------------------------------------------------------------------
template <class Real>
Real* Matrix3<Real>::operator[] (int iRow)
{
    return &m_afEntry[3*iRow];
}
//----------------------------------------------------------------------------
template <class Real>
Real Matrix3<Real>::operator() (int iRow, int iCol) const
{
    return m_afEntry[iCol+3*iRow];
}
//----------------------------------------------------------------------------
template <class Real>
Real& Matrix3<Real>::operator() (int iRow, int iCol)
{
    return m_afEntry[iCol+3*iRow];
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::MakeZero ()
{
    m_afEntry[0] = (Real)0.0;
    m_afEntry[1] = (Real)0.0;
    m_afEntry[2] = (Real)0.0;
    m_afEntry[3] = (Real)0.0;
    m_afEntry[4] = (Real)0.0;
    m_afEntry[5] = (Real)0.0;
    m_afEntry[6] = (Real)0.0;
    m_afEntry[7] = (Real)0.0;
    m_afEntry[8] = (Real)0.0;
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::MakeIdentity ()
{
    m_afEntry[0] = (Real)1.0;
    m_afEntry[1] = (Real)0.0;
    m_afEntry[2] = (Real)0.0;
    m_afEntry[3] = (Real)0.0;
    m_afEntry[4] = (Real)1.0;
    m_afEntry[5] = (Real)0.0;
    m_afEntry[6] = (Real)0.0;
    m_afEntry[7] = (Real)0.0;
    m_afEntry[8] = (Real)1.0;
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::MakeDiagonal (Real fM00, Real fM11, Real fM22)
{
    m_afEntry[0] = fM00;
    m_afEntry[1] = (Real)0.0;
    m_afEntry[2] = (Real)0.0;
    m_afEntry[3] = (Real)0.0;
    m_afEntry[4] = fM11;
    m_afEntry[5] = (Real)0.0;
    m_afEntry[6] = (Real)0.0;
    m_afEntry[7] = (Real)0.0;
    m_afEntry[8] = fM22;
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::FromAxisAngle (const Vector3<Real>& rkAxis,
    Real fAngle)
{
    Real fCos = Math<Real>::Cos(fAngle);
    Real fSin = Math<Real>::Sin(fAngle);
    Real fOneMinusCos = ((Real)1.0)-fCos;
    Real fX2 = rkAxis[0]*rkAxis[0];
    Real fY2 = rkAxis[1]*rkAxis[1];
    Real fZ2 = rkAxis[2]*rkAxis[2];
    Real fXYM = rkAxis[0]*rkAxis[1]*fOneMinusCos;
    Real fXZM = rkAxis[0]*rkAxis[2]*fOneMinusCos;
    Real fYZM = rkAxis[1]*rkAxis[2]*fOneMinusCos;
    Real fXSin = rkAxis[0]*fSin;
    Real fYSin = rkAxis[1]*fSin;
    Real fZSin = rkAxis[2]*fSin;
    
    m_afEntry[0] = fX2*fOneMinusCos+fCos;
    m_afEntry[1] = fXYM-fZSin;
    m_afEntry[2] = fXZM+fYSin;
    m_afEntry[3] = fXYM+fZSin;
    m_afEntry[4] = fY2*fOneMinusCos+fCos;
    m_afEntry[5] = fYZM-fXSin;
    m_afEntry[6] = fXZM-fYSin;
    m_afEntry[7] = fYZM+fXSin;
    m_afEntry[8] = fZ2*fOneMinusCos+fCos;

    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::MakeTensorProduct (const Vector3<Real>& rkU,
    const Vector3<Real>& rkV)
{
    m_afEntry[0] = rkU[0]*rkV[0];
    m_afEntry[1] = rkU[0]*rkV[1];
    m_afEntry[2] = rkU[0]*rkV[2];
    m_afEntry[3] = rkU[1]*rkV[0];
    m_afEntry[4] = rkU[1]*rkV[1];
    m_afEntry[5] = rkU[1]*rkV[2];
    m_afEntry[6] = rkU[2]*rkV[0];
    m_afEntry[7] = rkU[2]*rkV[1];
    m_afEntry[8] = rkU[2]*rkV[2];
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::SetRow (int iRow, const Vector3<Real>& rkV)
{
    int i0 = 3*iRow, i1 = i0+1, i2 = i1+1;
    m_afEntry[i0] = rkV[0];
    m_afEntry[i1] = rkV[1];
    m_afEntry[i2] = rkV[2];
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real> Matrix3<Real>::GetRow (int iRow) const
{
    int i0 = 3*iRow, i1 = i0+1, i2 = i1+1;
    return Vector3<Real>(m_afEntry[i0],m_afEntry[i1],m_afEntry[i2]);
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::SetColumn (int iCol, const Vector3<Real>& rkV)
{
    m_afEntry[iCol] = rkV[0];
    m_afEntry[iCol+3] = rkV[1];
    m_afEntry[iCol+6] = rkV[2];
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real> Matrix3<Real>::GetColumn (int iCol) const
{
    return Vector3<Real>(m_afEntry[iCol],m_afEntry[iCol+3],m_afEntry[iCol+6]);
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::GetColumnMajor (Real* afCMajor) const
{
    afCMajor[0] = m_afEntry[0];
    afCMajor[1] = m_afEntry[3];
    afCMajor[2] = m_afEntry[6];
    afCMajor[3] = m_afEntry[1];
    afCMajor[4] = m_afEntry[4];
    afCMajor[5] = m_afEntry[7];
    afCMajor[6] = m_afEntry[2];
    afCMajor[7] = m_afEntry[5];
    afCMajor[8] = m_afEntry[8];
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::operator= (const Matrix3& rkM)
{
    m_afEntry[0] = rkM.m_afEntry[0];
    m_afEntry[1] = rkM.m_afEntry[1];
    m_afEntry[2] = rkM.m_afEntry[2];
    m_afEntry[3] = rkM.m_afEntry[3];
    m_afEntry[4] = rkM.m_afEntry[4];
    m_afEntry[5] = rkM.m_afEntry[5];
    m_afEntry[6] = rkM.m_afEntry[6];
    m_afEntry[7] = rkM.m_afEntry[7];
    m_afEntry[8] = rkM.m_afEntry[8];
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
int Matrix3<Real>::CompareArrays (const Matrix3& rkM) const
{
    return memcmp(m_afEntry,rkM.m_afEntry,9*sizeof(Real));
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::operator== (const Matrix3& rkM) const
{
    return CompareArrays(rkM) == 0;
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::operator!= (const Matrix3& rkM) const
{
    return CompareArrays(rkM) != 0;
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::operator<  (const Matrix3& rkM) const
{
    return CompareArrays(rkM) < 0;
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::operator<= (const Matrix3& rkM) const
{
    return CompareArrays(rkM) <= 0;
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::operator>  (const Matrix3& rkM) const
{
    return CompareArrays(rkM) > 0;
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::operator>= (const Matrix3& rkM) const
{
    return CompareArrays(rkM) >= 0;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::operator+ (const Matrix3& rkM) const
{
    return Matrix3<Real>(
        m_afEntry[0] + rkM.m_afEntry[0],
        m_afEntry[1] + rkM.m_afEntry[1],
        m_afEntry[2] + rkM.m_afEntry[2],
        m_afEntry[3] + rkM.m_afEntry[3],
        m_afEntry[4] + rkM.m_afEntry[4],
        m_afEntry[5] + rkM.m_afEntry[5],
        m_afEntry[6] + rkM.m_afEntry[6],
        m_afEntry[7] + rkM.m_afEntry[7],
        m_afEntry[8] + rkM.m_afEntry[8]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::operator- (const Matrix3& rkM) const
{
    return Matrix3<Real>(
        m_afEntry[0] - rkM.m_afEntry[0],
        m_afEntry[1] - rkM.m_afEntry[1],
        m_afEntry[2] - rkM.m_afEntry[2],
        m_afEntry[3] - rkM.m_afEntry[3],
        m_afEntry[4] - rkM.m_afEntry[4],
        m_afEntry[5] - rkM.m_afEntry[5],
        m_afEntry[6] - rkM.m_afEntry[6],
        m_afEntry[7] - rkM.m_afEntry[7],
        m_afEntry[8] - rkM.m_afEntry[8]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::operator* (const Matrix3& rkM) const
{
    return Matrix3<Real>(
        m_afEntry[0]*rkM.m_afEntry[0] +
        m_afEntry[1]*rkM.m_afEntry[3] +
        m_afEntry[2]*rkM.m_afEntry[6],

        m_afEntry[0]*rkM.m_afEntry[1] +
        m_afEntry[1]*rkM.m_afEntry[4] +
        m_afEntry[2]*rkM.m_afEntry[7],

        m_afEntry[0]*rkM.m_afEntry[2] +
        m_afEntry[1]*rkM.m_afEntry[5] +
        m_afEntry[2]*rkM.m_afEntry[8],

        m_afEntry[3]*rkM.m_afEntry[0] +
        m_afEntry[4]*rkM.m_afEntry[3] +
        m_afEntry[5]*rkM.m_afEntry[6],

        m_afEntry[3]*rkM.m_afEntry[1] +
        m_afEntry[4]*rkM.m_afEntry[4] +
        m_afEntry[5]*rkM.m_afEntry[7],

        m_afEntry[3]*rkM.m_afEntry[2] +
        m_afEntry[4]*rkM.m_afEntry[5] +
        m_afEntry[5]*rkM.m_afEntry[8],

        m_afEntry[6]*rkM.m_afEntry[0] +
        m_afEntry[7]*rkM.m_afEntry[3] +
        m_afEntry[8]*rkM.m_afEntry[6],

        m_afEntry[6]*rkM.m_afEntry[1] +
        m_afEntry[7]*rkM.m_afEntry[4] +
        m_afEntry[8]*rkM.m_afEntry[7],

        m_afEntry[6]*rkM.m_afEntry[2] +
        m_afEntry[7]*rkM.m_afEntry[5] +
        m_afEntry[8]*rkM.m_afEntry[8]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::operator* (Real fScalar) const
{
    return Matrix3<Real>(
        fScalar*m_afEntry[0],
        fScalar*m_afEntry[1],
        fScalar*m_afEntry[2],
        fScalar*m_afEntry[3],
        fScalar*m_afEntry[4],
        fScalar*m_afEntry[5],
        fScalar*m_afEntry[6],
        fScalar*m_afEntry[7],
        fScalar*m_afEntry[8]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::operator/ (Real fScalar) const
{
    if (fScalar != (Real)0.0)
    {
        Real fInvScalar = ((Real)1.0)/fScalar;
        return Matrix3<Real>(
            fInvScalar*m_afEntry[0],
            fInvScalar*m_afEntry[1],
            fInvScalar*m_afEntry[2],
            fInvScalar*m_afEntry[3],
            fInvScalar*m_afEntry[4],
            fInvScalar*m_afEntry[5],
            fInvScalar*m_afEntry[6],
            fInvScalar*m_afEntry[7],
            fInvScalar*m_afEntry[8]);
    }

    return Matrix3<Real>(
        Math<Real>::MAX_REAL,
        Math<Real>::MAX_REAL,
        Math<Real>::MAX_REAL,
        Math<Real>::MAX_REAL,
        Math<Real>::MAX_REAL,
        Math<Real>::MAX_REAL,
        Math<Real>::MAX_REAL,
        Math<Real>::MAX_REAL,
        Math<Real>::MAX_REAL);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::operator- () const
{
    return Matrix3<Real>(
        -m_afEntry[0],
        -m_afEntry[1],
        -m_afEntry[2],
        -m_afEntry[3],
        -m_afEntry[4],
        -m_afEntry[5],
        -m_afEntry[6],
        -m_afEntry[7],
        -m_afEntry[8]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::operator+= (const Matrix3& rkM)
{
    m_afEntry[0] += rkM.m_afEntry[0];
    m_afEntry[1] += rkM.m_afEntry[1];
    m_afEntry[2] += rkM.m_afEntry[2];
    m_afEntry[3] += rkM.m_afEntry[3];
    m_afEntry[4] += rkM.m_afEntry[4];
    m_afEntry[5] += rkM.m_afEntry[5];
    m_afEntry[6] += rkM.m_afEntry[6];
    m_afEntry[7] += rkM.m_afEntry[7];
    m_afEntry[8] += rkM.m_afEntry[8];
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::operator-= (const Matrix3& rkM)
{
    m_afEntry[0] -= rkM.m_afEntry[0];
    m_afEntry[1] -= rkM.m_afEntry[1];
    m_afEntry[2] -= rkM.m_afEntry[2];
    m_afEntry[3] -= rkM.m_afEntry[3];
    m_afEntry[4] -= rkM.m_afEntry[4];
    m_afEntry[5] -= rkM.m_afEntry[5];
    m_afEntry[6] -= rkM.m_afEntry[6];
    m_afEntry[7] -= rkM.m_afEntry[7];
    m_afEntry[8] -= rkM.m_afEntry[8];
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::operator*= (Real fScalar)
{
    m_afEntry[0] *= fScalar;
    m_afEntry[1] *= fScalar;
    m_afEntry[2] *= fScalar;
    m_afEntry[3] *= fScalar;
    m_afEntry[4] *= fScalar;
    m_afEntry[5] *= fScalar;
    m_afEntry[6] *= fScalar;
    m_afEntry[7] *= fScalar;
    m_afEntry[8] *= fScalar;
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::operator/= (Real fScalar)
{
    if (fScalar != (Real)0.0)
    {
        Real fInvScalar = ((Real)1.0)/fScalar;
        m_afEntry[0] *= fInvScalar;
        m_afEntry[1] *= fInvScalar;
        m_afEntry[2] *= fInvScalar;
        m_afEntry[3] *= fInvScalar;
        m_afEntry[4] *= fInvScalar;
        m_afEntry[5] *= fInvScalar;
        m_afEntry[6] *= fInvScalar;
        m_afEntry[7] *= fInvScalar;
        m_afEntry[8] *= fInvScalar;
    }
    else
    {
        m_afEntry[0] = Math<Real>::MAX_REAL;
        m_afEntry[1] = Math<Real>::MAX_REAL;
        m_afEntry[2] = Math<Real>::MAX_REAL;
        m_afEntry[3] = Math<Real>::MAX_REAL;
        m_afEntry[4] = Math<Real>::MAX_REAL;
        m_afEntry[5] = Math<Real>::MAX_REAL;
        m_afEntry[6] = Math<Real>::MAX_REAL;
        m_afEntry[7] = Math<Real>::MAX_REAL;
        m_afEntry[8] = Math<Real>::MAX_REAL;
    }

    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real> Matrix3<Real>::operator* (const Vector3<Real>& rkV) const
{
    return Vector3<Real>(
        m_afEntry[0]*rkV[0] + m_afEntry[1]*rkV[1] + m_afEntry[2]*rkV[2],
        m_afEntry[3]*rkV[0] + m_afEntry[4]*rkV[1] + m_afEntry[5]*rkV[2],
        m_afEntry[6]*rkV[0] + m_afEntry[7]*rkV[1] + m_afEntry[8]*rkV[2]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::Transpose () const
{
    return Matrix3<Real>(
        m_afEntry[0],
        m_afEntry[3],
        m_afEntry[6],
        m_afEntry[1],
        m_afEntry[4],
        m_afEntry[7],
        m_afEntry[2],
        m_afEntry[5],
        m_afEntry[8]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::TransposeTimes (const Matrix3& rkM) const
{
    // P = A^T*B
    return Matrix3<Real>(
        m_afEntry[0]*rkM.m_afEntry[0] +
        m_afEntry[3]*rkM.m_afEntry[3] +
        m_afEntry[6]*rkM.m_afEntry[6],

        m_afEntry[0]*rkM.m_afEntry[1] +
        m_afEntry[3]*rkM.m_afEntry[4] +
        m_afEntry[6]*rkM.m_afEntry[7],

        m_afEntry[0]*rkM.m_afEntry[2] +
        m_afEntry[3]*rkM.m_afEntry[5] +
        m_afEntry[6]*rkM.m_afEntry[8],

        m_afEntry[1]*rkM.m_afEntry[0] +
        m_afEntry[4]*rkM.m_afEntry[3] +
        m_afEntry[7]*rkM.m_afEntry[6],

        m_afEntry[1]*rkM.m_afEntry[1] +
        m_afEntry[4]*rkM.m_afEntry[4] +
        m_afEntry[7]*rkM.m_afEntry[7],

        m_afEntry[1]*rkM.m_afEntry[2] +
        m_afEntry[4]*rkM.m_afEntry[5] +
        m_afEntry[7]*rkM.m_afEntry[8],

        m_afEntry[2]*rkM.m_afEntry[0] +
        m_afEntry[5]*rkM.m_afEntry[3] +
        m_afEntry[8]*rkM.m_afEntry[6],

        m_afEntry[2]*rkM.m_afEntry[1] +
        m_afEntry[5]*rkM.m_afEntry[4] +
        m_afEntry[8]*rkM.m_afEntry[7],

        m_afEntry[2]*rkM.m_afEntry[2] +
        m_afEntry[5]*rkM.m_afEntry[5] +
        m_afEntry[8]*rkM.m_afEntry[8]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::TimesTranspose (const Matrix3& rkM) const
{
    // P = A*B^T
    return Matrix3<Real>(
        m_afEntry[0]*rkM.m_afEntry[0] +
        m_afEntry[1]*rkM.m_afEntry[1] +
        m_afEntry[2]*rkM.m_afEntry[2],

        m_afEntry[0]*rkM.m_afEntry[3] +
        m_afEntry[1]*rkM.m_afEntry[4] +
        m_afEntry[2]*rkM.m_afEntry[5],

        m_afEntry[0]*rkM.m_afEntry[6] +
        m_afEntry[1]*rkM.m_afEntry[7] +
        m_afEntry[2]*rkM.m_afEntry[8],

        m_afEntry[3]*rkM.m_afEntry[0] +
        m_afEntry[4]*rkM.m_afEntry[1] +
        m_afEntry[5]*rkM.m_afEntry[2],

        m_afEntry[3]*rkM.m_afEntry[3] +
        m_afEntry[4]*rkM.m_afEntry[4] +
        m_afEntry[5]*rkM.m_afEntry[5],

        m_afEntry[3]*rkM.m_afEntry[6] +
        m_afEntry[4]*rkM.m_afEntry[7] +
        m_afEntry[5]*rkM.m_afEntry[8],

        m_afEntry[6]*rkM.m_afEntry[0] +
        m_afEntry[7]*rkM.m_afEntry[1] +
        m_afEntry[8]*rkM.m_afEntry[2],

        m_afEntry[6]*rkM.m_afEntry[3] +
        m_afEntry[7]*rkM.m_afEntry[4] +
        m_afEntry[8]*rkM.m_afEntry[5],

        m_afEntry[6]*rkM.m_afEntry[6] +
        m_afEntry[7]*rkM.m_afEntry[7] +
        m_afEntry[8]*rkM.m_afEntry[8]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::Inverse () const
{
    // Invert a 3x3 using cofactors.  This is faster than using a generic
    // Gaussian elimination because of the loop overhead of such a method.

    Matrix3 kInverse;

    kInverse.m_afEntry[0] =
        m_afEntry[4]*m_afEntry[8] - m_afEntry[5]*m_afEntry[7];
    kInverse.m_afEntry[1] =
        m_afEntry[2]*m_afEntry[7] - m_afEntry[1]*m_afEntry[8];
    kInverse.m_afEntry[2] =
        m_afEntry[1]*m_afEntry[5] - m_afEntry[2]*m_afEntry[4];
    kInverse.m_afEntry[3] =
        m_afEntry[5]*m_afEntry[6] - m_afEntry[3]*m_afEntry[8];
    kInverse.m_afEntry[4] =
        m_afEntry[0]*m_afEntry[8] - m_afEntry[2]*m_afEntry[6];
    kInverse.m_afEntry[5] =
        m_afEntry[2]*m_afEntry[3] - m_afEntry[0]*m_afEntry[5];
    kInverse.m_afEntry[6] =
        m_afEntry[3]*m_afEntry[7] - m_afEntry[4]*m_afEntry[6];
    kInverse.m_afEntry[7] =
        m_afEntry[1]*m_afEntry[6] - m_afEntry[0]*m_afEntry[7];
    kInverse.m_afEntry[8] =
        m_afEntry[0]*m_afEntry[4] - m_afEntry[1]*m_afEntry[3];

    Real fDet =
        m_afEntry[0]*kInverse.m_afEntry[0] +
        m_afEntry[1]*kInverse.m_afEntry[3] +
        m_afEntry[2]*kInverse.m_afEntry[6];

    if (Math<Real>::FAbs(fDet) <= Math<Real>::ZERO_TOLERANCE)
    {
        return ZERO;
    }

    Real fInvDet = ((Real)1.0)/fDet;
    kInverse.m_afEntry[0] *= fInvDet;
    kInverse.m_afEntry[1] *= fInvDet;
    kInverse.m_afEntry[2] *= fInvDet;
    kInverse.m_afEntry[3] *= fInvDet;
    kInverse.m_afEntry[4] *= fInvDet;
    kInverse.m_afEntry[5] *= fInvDet;
    kInverse.m_afEntry[6] *= fInvDet;
    kInverse.m_afEntry[7] *= fInvDet;
    kInverse.m_afEntry[8] *= fInvDet;
    return kInverse;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::Adjoint () const
{
    return Matrix3<Real>(
        m_afEntry[4]*m_afEntry[8] - m_afEntry[5]*m_afEntry[7],
        m_afEntry[2]*m_afEntry[7] - m_afEntry[1]*m_afEntry[8],
        m_afEntry[1]*m_afEntry[5] - m_afEntry[2]*m_afEntry[4],
        m_afEntry[5]*m_afEntry[6] - m_afEntry[3]*m_afEntry[8],
        m_afEntry[0]*m_afEntry[8] - m_afEntry[2]*m_afEntry[6],
        m_afEntry[2]*m_afEntry[3] - m_afEntry[0]*m_afEntry[5],
        m_afEntry[3]*m_afEntry[7] - m_afEntry[4]*m_afEntry[6],
        m_afEntry[1]*m_afEntry[6] - m_afEntry[0]*m_afEntry[7],
        m_afEntry[0]*m_afEntry[4] - m_afEntry[1]*m_afEntry[3]);
}
//----------------------------------------------------------------------------
template <class Real>
Real Matrix3<Real>::Determinant () const
{
    Real fCo00 = m_afEntry[4]*m_afEntry[8] - m_afEntry[5]*m_afEntry[7];
    Real fCo10 = m_afEntry[5]*m_afEntry[6] - m_afEntry[3]*m_afEntry[8];
    Real fCo20 = m_afEntry[3]*m_afEntry[7] - m_afEntry[4]*m_afEntry[6];
    Real fDet = m_afEntry[0]*fCo00 + m_afEntry[1]*fCo10 + m_afEntry[2]*fCo20;
    return fDet;
}
//----------------------------------------------------------------------------
template <class Real>
Real Matrix3<Real>::QForm (const Vector3<Real>& rkU, const Vector3<Real>& rkV)
    const
{
    return rkU.Dot((*this)*rkV);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::TimesDiagonal (const Vector3<Real>& rkDiag) const
{
    return Matrix3<Real>(
        m_afEntry[0]*rkDiag[0],m_afEntry[1]*rkDiag[1],m_afEntry[2]*rkDiag[2],
        m_afEntry[3]*rkDiag[0],m_afEntry[4]*rkDiag[1],m_afEntry[5]*rkDiag[2],
        m_afEntry[6]*rkDiag[0],m_afEntry[7]*rkDiag[1],m_afEntry[8]*rkDiag[2]);
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> Matrix3<Real>::DiagonalTimes (const Vector3<Real>& rkDiag) const
{
    return Matrix3<Real>(
        rkDiag[0]*m_afEntry[0],rkDiag[0]*m_afEntry[1],rkDiag[0]*m_afEntry[2],
        rkDiag[1]*m_afEntry[3],rkDiag[1]*m_afEntry[4],rkDiag[1]*m_afEntry[5],
        rkDiag[2]*m_afEntry[6],rkDiag[2]*m_afEntry[7],rkDiag[2]*m_afEntry[8]);
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::ToAxisAngle (Vector3<Real>& rkAxis, Real& rfAngle) const
{
    // Let (x,y,z) be the unit-length axis and let A be an angle of rotation.
    // The rotation matrix is R = I + sin(A)*P + (1-cos(A))*P^2 where
    // I is the identity and
    //
    //       +-        -+
    //   P = |  0 -z +y |
    //       | +z  0 -x |
    //       | -y +x  0 |
    //       +-        -+
    //
    // If A > 0, R represents a counterclockwise rotation about the axis in
    // the sense of looking from the tip of the axis vector towards the
    // origin.  Some algebra will show that
    //
    //   cos(A) = (trace(R)-1)/2  and  R - R^t = 2*sin(A)*P
    //
    // In the event that A = pi, R-R^t = 0 which prevents us from extracting
    // the axis through P.  Instead note that R = I+2*P^2 when A = pi, so
    // P^2 = (R-I)/2.  The diagonal entries of P^2 are x^2-1, y^2-1, and
    // z^2-1.  We can solve these for axis (x,y,z).  Because the angle is pi,
    // it does not matter which sign you choose on the square roots.

    Real fTrace = m_afEntry[0] + m_afEntry[4] + m_afEntry[8];
    Real fCos = ((Real)0.5)*(fTrace-(Real)1.0);
    rfAngle = Math<Real>::ACos(fCos);  // in [0,PI]

    if (rfAngle > (Real)0.0)
    {
        if (rfAngle < Math<Real>::PI)
        {
            rkAxis[0] = m_afEntry[7]-m_afEntry[5];
            rkAxis[1] = m_afEntry[2]-m_afEntry[6];
            rkAxis[2] = m_afEntry[3]-m_afEntry[1];
            rkAxis.Normalize();
        }
        else
        {
            // angle is PI
            Real fHalfInverse;
            if (m_afEntry[0] >= m_afEntry[4])
            {
                // r00 >= r11
                if (m_afEntry[0] >= m_afEntry[8])
                {
                    // r00 is maximum diagonal term
                    rkAxis[0] = ((Real)0.5)*Math<Real>::Sqrt(m_afEntry[0] -
                        m_afEntry[4] - m_afEntry[8] + (Real)1.0);
                    fHalfInverse = ((Real)0.5)/rkAxis[0];
                    rkAxis[1] = fHalfInverse*m_afEntry[1];
                    rkAxis[2] = fHalfInverse*m_afEntry[2];
                }
                else
                {
                    // r22 is maximum diagonal term
                    rkAxis[2] = ((Real)0.5)*Math<Real>::Sqrt(m_afEntry[8] -
                        m_afEntry[0] - m_afEntry[4] + (Real)1.0);
                    fHalfInverse = ((Real)0.5)/rkAxis[2];
                    rkAxis[0] = fHalfInverse*m_afEntry[2];
                    rkAxis[1] = fHalfInverse*m_afEntry[5];
                }
            }
            else
            {
                // r11 > r00
                if (m_afEntry[4] >= m_afEntry[8])
                {
                    // r11 is maximum diagonal term
                    rkAxis[1] = ((Real)0.5)*Math<Real>::Sqrt(m_afEntry[4] -
                        m_afEntry[0] - m_afEntry[8] + (Real)1.0);
                    fHalfInverse  = ((Real)0.5)/rkAxis[1];
                    rkAxis[0] = fHalfInverse*m_afEntry[1];
                    rkAxis[2] = fHalfInverse*m_afEntry[5];
                }
                else
                {
                    // r22 is maximum diagonal term
                    rkAxis[2] = ((Real)0.5)*Math<Real>::Sqrt(m_afEntry[8] -
                        m_afEntry[0] - m_afEntry[4] + (Real)1.0);
                    fHalfInverse = ((Real)0.5)/rkAxis[2];
                    rkAxis[0] = fHalfInverse*m_afEntry[2];
                    rkAxis[1] = fHalfInverse*m_afEntry[5];
                }
            }
        }
    }
    else
    {
        // The angle is 0 and the matrix is the identity.  Any axis will
        // work, so just use the x-axis.
        rkAxis[0] = (Real)1.0;
        rkAxis[1] = (Real)0.0;
        rkAxis[2] = (Real)0.0;
    }
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::Orthonormalize ()
{
    // Algorithm uses Gram-Schmidt orthogonalization.  If 'this' matrix is
    // M = [m0|m1|m2], then orthonormal output matrix is Q = [q0|q1|q2],
    //
    //   q0 = m0/|m0|
    //   q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
    //   q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
    //
    // where |V| indicates length of vector V and A*B indicates dot
    // product of vectors A and B.

    // compute q0
    Real fInvLength = Math<Real>::InvSqrt(m_afEntry[0]*m_afEntry[0] +
        m_afEntry[3]*m_afEntry[3] + m_afEntry[6]*m_afEntry[6]);

    m_afEntry[0] *= fInvLength;
    m_afEntry[3] *= fInvLength;
    m_afEntry[6] *= fInvLength;

    // compute q1
    Real fDot0 = m_afEntry[0]*m_afEntry[1] + m_afEntry[3]*m_afEntry[4] +
        m_afEntry[6]*m_afEntry[7];

    m_afEntry[1] -= fDot0*m_afEntry[0];
    m_afEntry[4] -= fDot0*m_afEntry[3];
    m_afEntry[7] -= fDot0*m_afEntry[6];

    fInvLength = Math<Real>::InvSqrt(m_afEntry[1]*m_afEntry[1] +
        m_afEntry[4]*m_afEntry[4] + m_afEntry[7]*m_afEntry[7]);

    m_afEntry[1] *= fInvLength;
    m_afEntry[4] *= fInvLength;
    m_afEntry[7] *= fInvLength;

    // compute q2
    Real fDot1 = m_afEntry[1]*m_afEntry[2] + m_afEntry[4]*m_afEntry[5] +
        m_afEntry[7]*m_afEntry[8];

    fDot0 = m_afEntry[0]*m_afEntry[2] + m_afEntry[3]*m_afEntry[5] +
        m_afEntry[6]*m_afEntry[8];

    m_afEntry[2] -= fDot0*m_afEntry[0] + fDot1*m_afEntry[1];
    m_afEntry[5] -= fDot0*m_afEntry[3] + fDot1*m_afEntry[4];
    m_afEntry[8] -= fDot0*m_afEntry[6] + fDot1*m_afEntry[7];

    fInvLength = Math<Real>::InvSqrt(m_afEntry[2]*m_afEntry[2] +
        m_afEntry[5]*m_afEntry[5] + m_afEntry[8]*m_afEntry[8]);

    m_afEntry[2] *= fInvLength;
    m_afEntry[5] *= fInvLength;
    m_afEntry[8] *= fInvLength;
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::EigenDecomposition (Matrix3& rkRot, Matrix3& rkDiag) const
{
    // Factor M = R*D*R^T.  The columns of R are the eigenvectors.  The
    // diagonal entries of D are the corresponding eigenvalues.
    Real afDiag[3], afSubd[2];
    rkRot = *this;
    bool bReflection = rkRot.Tridiagonalize(afDiag,afSubd);
    bool bConverged = rkRot.QLAlgorithm(afDiag,afSubd);
    assert(bConverged);

    // (insertion) sort eigenvalues in increasing order, d0 <= d1 <= d2
    int i;
    Real fSave;

    if (afDiag[1] < afDiag[0])
    {
        // swap d0 and d1
        fSave = afDiag[0];
        afDiag[0] = afDiag[1];
        afDiag[1] = fSave;

        // swap V0 and V1
        for (i = 0; i < 3; i++)
        {
            fSave = rkRot[i][0];
            rkRot[i][0] = rkRot[i][1];
            rkRot[i][1] = fSave;
        }
        bReflection = !bReflection;
    }

    if (afDiag[2] < afDiag[1])
    {
        // swap d1 and d2
        fSave = afDiag[1];
        afDiag[1] = afDiag[2];
        afDiag[2] = fSave;

        // swap V1 and V2
        for (i = 0; i < 3; i++)
        {
            fSave = rkRot[i][1];
            rkRot[i][1] = rkRot[i][2];
            rkRot[i][2] = fSave;
        }
        bReflection = !bReflection;
    }

    if (afDiag[1] < afDiag[0])
    {
        // swap d0 and d1
        fSave = afDiag[0];
        afDiag[0] = afDiag[1];
        afDiag[1] = fSave;

        // swap V0 and V1
        for (i = 0; i < 3; i++)
        {
            fSave = rkRot[i][0];
            rkRot[i][0] = rkRot[i][1];
            rkRot[i][1] = fSave;
        }
        bReflection = !bReflection;
    }

    rkDiag.MakeDiagonal(afDiag[0],afDiag[1],afDiag[2]);

    if (bReflection)
    {
        // The orthogonal transformation that diagonalizes M is a reflection.
        // Make the eigenvectors a right--handed system by changing sign on
        // the last column.
        rkRot[0][2] = -rkRot[0][2];
        rkRot[1][2] = -rkRot[1][2];
        rkRot[2][2] = -rkRot[2][2];
    }
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::FromEulerAnglesXYZ (Real fXAngle, Real fYAngle,
    Real fZAngle)
{
    Real fCos, fSin;

    fCos = Math<Real>::Cos(fXAngle);
    fSin = Math<Real>::Sin(fXAngle);
    Matrix3 kXMat(
        (Real)1.0,(Real)0.0,(Real)0.0,
        (Real)0.0,fCos,-fSin,
        (Real)0.0,fSin,fCos);

    fCos = Math<Real>::Cos(fYAngle);
    fSin = Math<Real>::Sin(fYAngle);
    Matrix3 kYMat(
        fCos,(Real)0.0,fSin,
        (Real)0.0,(Real)1.0,(Real)0.0,
        -fSin,(Real)0.0,fCos);

    fCos = Math<Real>::Cos(fZAngle);
    fSin = Math<Real>::Sin(fZAngle);
    Matrix3 kZMat(
        fCos,-fSin,(Real)0.0,
        fSin,fCos,(Real)0.0,
        (Real)0.0,(Real)0.0,(Real)1.0);

    *this = kXMat*(kYMat*kZMat);
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::FromEulerAnglesXZY (Real fXAngle, Real fZAngle,
    Real fYAngle)
{
    Real fCos, fSin;

    fCos = Math<Real>::Cos(fXAngle);
    fSin = Math<Real>::Sin(fXAngle);
    Matrix3 kXMat(
        (Real)1.0,(Real)0.0,(Real)0.0,
        (Real)0.0,fCos,-fSin,
        (Real)0.0,fSin,fCos);

    fCos = Math<Real>::Cos(fZAngle);
    fSin = Math<Real>::Sin(fZAngle);
    Matrix3 kZMat(
        fCos,-fSin,(Real)0.0,
        fSin,fCos,(Real)0.0,
        (Real)0.0,(Real)0.0,(Real)1.0);

    fCos = Math<Real>::Cos(fYAngle);
    fSin = Math<Real>::Sin(fYAngle);
    Matrix3 kYMat(
        fCos,(Real)0.0,fSin,
        (Real)0.0,(Real)1.0,(Real)0.0,
        -fSin,(Real)0.0,fCos);

    *this = kXMat*(kZMat*kYMat);
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::FromEulerAnglesYXZ (Real fYAngle, Real fXAngle,
    Real fZAngle)
{
    Real fCos, fSin;

    fCos = Math<Real>::Cos(fYAngle);
    fSin = Math<Real>::Sin(fYAngle);
    Matrix3 kYMat(
        fCos,(Real)0.0,fSin,
        (Real)0.0,(Real)1.0,(Real)0.0,
        -fSin,(Real)0.0,fCos);

    fCos = Math<Real>::Cos(fXAngle);
    fSin = Math<Real>::Sin(fXAngle);
    Matrix3 kXMat(
        (Real)1.0,(Real)0.0,(Real)0.0,
        (Real)0.0,fCos,-fSin,
        (Real)0.0,fSin,fCos);

    fCos = Math<Real>::Cos(fZAngle);
    fSin = Math<Real>::Sin(fZAngle);
    Matrix3 kZMat(
        fCos,-fSin,(Real)0.0,
        fSin,fCos,(Real)0.0,
        (Real)0.0,(Real)0.0,(Real)1.0);

    *this = kYMat*(kXMat*kZMat);
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::FromEulerAnglesYZX (Real fYAngle, Real fZAngle,
    Real fXAngle)
{
    Real fCos, fSin;

    fCos = Math<Real>::Cos(fYAngle);
    fSin = Math<Real>::Sin(fYAngle);
    Matrix3 kYMat(
        fCos,(Real)0.0,fSin,
        (Real)0.0,(Real)1.0,(Real)0.0,
        -fSin,(Real)0.0,fCos);

    fCos = Math<Real>::Cos(fZAngle);
    fSin = Math<Real>::Sin(fZAngle);
    Matrix3 kZMat(
        fCos,-fSin,(Real)0.0,
        fSin,fCos,(Real)0.0,
        (Real)0.0,(Real)0.0,(Real)1.0);

    fCos = Math<Real>::Cos(fXAngle);
    fSin = Math<Real>::Sin(fXAngle);
    Matrix3 kXMat(
        (Real)1.0,(Real)0.0,(Real)0.0,
        (Real)0.0,fCos,-fSin,
        (Real)0.0,fSin,fCos);

    *this = kYMat*(kZMat*kXMat);
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::FromEulerAnglesZXY (Real fZAngle, Real fXAngle,
    Real fYAngle)
{
    Real fCos, fSin;

    fCos = Math<Real>::Cos(fZAngle);
    fSin = Math<Real>::Sin(fZAngle);
    Matrix3 kZMat(
        fCos,-fSin,(Real)0.0,
        fSin,fCos,(Real)0.0,
        (Real)0.0,(Real)0.0,(Real)1.0);

    fCos = Math<Real>::Cos(fXAngle);
    fSin = Math<Real>::Sin(fXAngle);
    Matrix3 kXMat(
        (Real)1.0,(Real)0.0,(Real)0.0,
        (Real)0.0,fCos,-fSin,
        (Real)0.0,fSin,fCos);

    fCos = Math<Real>::Cos(fYAngle);
    fSin = Math<Real>::Sin(fYAngle);
    Matrix3 kYMat(
        fCos,(Real)0.0,fSin,
        (Real)0.0,(Real)1.0,(Real)0.0,
        -fSin,(Real)0.0,fCos);

    *this = kZMat*(kXMat*kYMat);
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::FromEulerAnglesZYX (Real fZAngle, Real fYAngle,
    Real fXAngle)
{
    Real fCos, fSin;

    fCos = Math<Real>::Cos(fZAngle);
    fSin = Math<Real>::Sin(fZAngle);
    Matrix3 kZMat(
        fCos,-fSin,(Real)0.0,
        fSin,fCos,(Real)0.0,
        (Real)0.0,(Real)0.0,(Real)1.0);

    fCos = Math<Real>::Cos(fYAngle);
    fSin = Math<Real>::Sin(fYAngle);
    Matrix3 kYMat(
        fCos,(Real)0.0,fSin,
        (Real)0.0,(Real)1.0,(Real)0.0,
        -fSin,(Real)0.0,fCos);

    fCos = Math<Real>::Cos(fXAngle);
    fSin = Math<Real>::Sin(fXAngle);
    Matrix3 kXMat(
        (Real)1.0,(Real)0.0,(Real)0.0,
        (Real)0.0,fCos,-fSin,
        (Real)0.0,fSin,fCos);

    *this = kZMat*(kYMat*kXMat);
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::ToEulerAnglesXYZ (Real& rfXAngle, Real& rfYAngle,
    Real& rfZAngle) const
{
    // rot =  cy*cz          -cy*sz           sy
    //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
    //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy

    if (m_afEntry[2] < (Real)1.0)
    {
        if (m_afEntry[2] > -(Real)1.0)
        {
            rfXAngle = Math<Real>::ATan2(-m_afEntry[5],m_afEntry[8]);
            rfYAngle = (Real)asin((double)m_afEntry[2]);
            rfZAngle = Math<Real>::ATan2(-m_afEntry[1],m_afEntry[0]);
            return true;
        }
        else
        {
            // WARNING.  Not unique.  XA - ZA = -atan2(r10,r11)
            rfXAngle = -Math<Real>::ATan2(m_afEntry[3],m_afEntry[4]);
            rfYAngle = -Math<Real>::HALF_PI;
            rfZAngle = (Real)0.0;
            return false;
        }
    }
    else
    {
        // WARNING.  Not unique.  XAngle + ZAngle = atan2(r10,r11)
        rfXAngle = Math<Real>::ATan2(m_afEntry[3],m_afEntry[4]);
        rfYAngle = Math<Real>::HALF_PI;
        rfZAngle = (Real)0.0;
        return false;
    }
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::ToEulerAnglesXZY (Real& rfXAngle, Real& rfZAngle,
    Real& rfYAngle) const
{
    // rot =  cy*cz          -sz              cz*sy
    //        sx*sy+cx*cy*sz  cx*cz          -cy*sx+cx*sy*sz
    //       -cx*sy+cy*sx*sz  cz*sx           cx*cy+sx*sy*sz

    if (m_afEntry[1] < (Real)1.0)
    {
        if (m_afEntry[1] > -(Real)1.0)
        {
            rfXAngle = Math<Real>::ATan2(m_afEntry[7],m_afEntry[4]);
            rfZAngle = (Real)asin(-(double)m_afEntry[1]);
            rfYAngle = Math<Real>::ATan2(m_afEntry[2],m_afEntry[0]);
            return true;
        }
        else
        {
            // WARNING.  Not unique.  XA - YA = atan2(r20,r22)
            rfXAngle = Math<Real>::ATan2(m_afEntry[6],m_afEntry[8]);
            rfZAngle = Math<Real>::HALF_PI;
            rfYAngle = (Real)0.0;
            return false;
        }
    }
    else
    {
        // WARNING.  Not unique.  XA + YA = atan2(-r20,r22)
        rfXAngle = Math<Real>::ATan2(-m_afEntry[6],m_afEntry[8]);
        rfZAngle = -Math<Real>::HALF_PI;
        rfYAngle = (Real)0.0;
        return false;
    }
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::ToEulerAnglesYXZ (Real& rfYAngle, Real& rfXAngle,
    Real& rfZAngle) const
{
    // rot =  cy*cz+sx*sy*sz  cz*sx*sy-cy*sz  cx*sy
    //        cx*sz           cx*cz          -sx
    //       -cz*sy+cy*sx*sz  cy*cz*sx+sy*sz  cx*cy

    if (m_afEntry[5] < (Real)1.0)
    {
        if (m_afEntry[5] > -(Real)1.0)
        {
            rfYAngle = Math<Real>::ATan2(m_afEntry[2],m_afEntry[8]);
            rfXAngle = (Real)asin(-(double)m_afEntry[5]);
            rfZAngle = Math<Real>::ATan2(m_afEntry[3],m_afEntry[4]);
            return true;
        }
        else
        {
            // WARNING.  Not unique.  YA - ZA = atan2(r01,r00)
            rfYAngle = Math<Real>::ATan2(m_afEntry[1],m_afEntry[0]);
            rfXAngle = Math<Real>::HALF_PI;
            rfZAngle = (Real)0.0;
            return false;
        }
    }
    else
    {
        // WARNING.  Not unique.  YA + ZA = atan2(-r01,r00)
        rfYAngle = Math<Real>::ATan2(-m_afEntry[1],m_afEntry[0]);
        rfXAngle = -Math<Real>::HALF_PI;
        rfZAngle = (Real)0.0;
        return false;
    }
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::ToEulerAnglesYZX (Real& rfYAngle, Real& rfZAngle,
    Real& rfXAngle) const
{
    // rot =  cy*cz           sx*sy-cx*cy*sz  cx*sy+cy*sx*sz
    //        sz              cx*cz          -cz*sx
    //       -cz*sy           cy*sx+cx*sy*sz  cx*cy-sx*sy*sz

    if (m_afEntry[3] < (Real)1.0)
    {
        if (m_afEntry[3] > -(Real)1.0)
        {
            rfYAngle = Math<Real>::ATan2(-m_afEntry[6],m_afEntry[0]);
            rfZAngle = (Real)asin((double)m_afEntry[3]);
            rfXAngle = Math<Real>::ATan2(-m_afEntry[5],m_afEntry[4]);
            return true;
        }
        else
        {
            // WARNING.  Not unique.  YA - XA = -atan2(r21,r22);
            rfYAngle = -Math<Real>::ATan2(m_afEntry[7],m_afEntry[8]);
            rfZAngle = -Math<Real>::HALF_PI;
            rfXAngle = (Real)0.0;
            return false;
        }
    }
    else
    {
        // WARNING.  Not unique.  YA + XA = atan2(r21,r22)
        rfYAngle = Math<Real>::ATan2(m_afEntry[7],m_afEntry[8]);
        rfZAngle = Math<Real>::HALF_PI;
        rfXAngle = (Real)0.0;
        return false;
    }
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::ToEulerAnglesZXY (Real& rfZAngle, Real& rfXAngle,
    Real& rfYAngle) const
{
    // rot =  cy*cz-sx*sy*sz -cx*sz           cz*sy+cy*sx*sz
    //        cz*sx*sy+cy*sz  cx*cz          -cy*cz*sx+sy*sz
    //       -cx*sy           sx              cx*cy

    if (m_afEntry[7] < (Real)1.0)
    {
        if (m_afEntry[7] > -(Real)1.0)
        {
            rfZAngle = Math<Real>::ATan2(-m_afEntry[1],m_afEntry[4]);
            rfXAngle = (Real)asin((double)m_afEntry[7]);
            rfYAngle = Math<Real>::ATan2(-m_afEntry[6],m_afEntry[8]);
            return true;
        }
        else
        {
            // WARNING.  Not unique.  ZA - YA = -atan(r02,r00)
            rfZAngle = -Math<Real>::ATan2(m_afEntry[2],m_afEntry[0]);
            rfXAngle = -Math<Real>::HALF_PI;
            rfYAngle = (Real)0.0;
            return false;
        }
    }
    else
    {
        // WARNING.  Not unique.  ZA + YA = atan2(r02,r00)
        rfZAngle = Math<Real>::ATan2(m_afEntry[2],m_afEntry[0]);
        rfXAngle = Math<Real>::HALF_PI;
        rfYAngle = (Real)0.0;
        return false;
    }
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::ToEulerAnglesZYX (Real& rfZAngle, Real& rfYAngle,
    Real& rfXAngle) const
{
    // rot =  cy*cz           cz*sx*sy-cx*sz  cx*cz*sy+sx*sz
    //        cy*sz           cx*cz+sx*sy*sz -cz*sx+cx*sy*sz
    //       -sy              cy*sx           cx*cy

    if (m_afEntry[6] < (Real)1.0)
    {
        if (m_afEntry[6] > -(Real)1.0)
        {
            rfZAngle = Math<Real>::ATan2(m_afEntry[3],m_afEntry[0]);
            rfYAngle = (Real)asin(-(double)m_afEntry[6]);
            rfXAngle = Math<Real>::ATan2(m_afEntry[7],m_afEntry[8]);
            return true;
        }
        else
        {
            // WARNING.  Not unique.  ZA - XA = -atan2(r01,r02)
            rfZAngle = -Math<Real>::ATan2(m_afEntry[1],m_afEntry[2]);
            rfYAngle = Math<Real>::HALF_PI;
            rfXAngle = (Real)0.0;
            return false;
        }
    }
    else
    {
        // WARNING.  Not unique.  ZA + XA = atan2(-r01,-r02)
        rfZAngle = Math<Real>::ATan2(-m_afEntry[1],-m_afEntry[2]);
        rfYAngle = -Math<Real>::HALF_PI;
        rfXAngle = (Real)0.0;
        return false;
    }
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real>& Matrix3<Real>::Slerp (Real fT, const Matrix3& rkR0,
    const Matrix3& rkR1)
{
    Vector3<Real> kAxis;
    Real fAngle;
    Matrix3 kProd = rkR0.TransposeTimes(rkR1);
    kProd.ToAxisAngle(kAxis,fAngle);
    FromAxisAngle(kAxis,fT*fAngle);
    return *this;
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::Tridiagonalize (Real afDiag[3], Real afSubd[2])
{
    // Householder reduction T = Q^t M Q
    //   Input:   
    //     mat, symmetric 3x3 matrix M
    //   Output:  
    //     mat, orthogonal matrix Q (a reflection)
    //     diag, diagonal entries of T
    //     subd, subdiagonal entries of T (T is symmetric)

    Real fM00 = m_afEntry[0];
    Real fM01 = m_afEntry[1];
    Real fM02 = m_afEntry[2];
    Real fM11 = m_afEntry[4];
    Real fM12 = m_afEntry[5];
    Real fM22 = m_afEntry[8];

    afDiag[0] = fM00;
    if (Math<Real>::FAbs(fM02) >= Math<Real>::ZERO_TOLERANCE)
    {
        afSubd[0] = Math<Real>::Sqrt(fM01*fM01+fM02*fM02);
        Real fInvLength = ((Real)1.0)/afSubd[0];
        fM01 *= fInvLength;
        fM02 *= fInvLength;
        Real fTmp = ((Real)2.0)*fM01*fM12+fM02*(fM22-fM11);
        afDiag[1] = fM11+fM02*fTmp;
        afDiag[2] = fM22-fM02*fTmp;
        afSubd[1] = fM12-fM01*fTmp;

        m_afEntry[0] = (Real)1.0;
        m_afEntry[1] = (Real)0.0;
        m_afEntry[2] = (Real)0.0;
        m_afEntry[3] = (Real)0.0;
        m_afEntry[4] = fM01;
        m_afEntry[5] = fM02;
        m_afEntry[6] = (Real)0.0;
        m_afEntry[7] = fM02;
        m_afEntry[8] = -fM01;
        return true;
    }
    else
    {
        afDiag[1] = fM11;
        afDiag[2] = fM22;
        afSubd[0] = fM01;
        afSubd[1] = fM12;

        m_afEntry[0] = (Real)1.0;
        m_afEntry[1] = (Real)0.0;
        m_afEntry[2] = (Real)0.0;
        m_afEntry[3] = (Real)0.0;
        m_afEntry[4] = (Real)1.0;
        m_afEntry[5] = (Real)0.0;
        m_afEntry[6] = (Real)0.0;
        m_afEntry[7] = (Real)0.0;
        m_afEntry[8] = (Real)1.0;
        return false;
    }
}
//----------------------------------------------------------------------------
template <class Real>
bool Matrix3<Real>::QLAlgorithm (Real afDiag[3], Real afSubd[2])
{
    // This is an implementation of the symmetric QR algorithm from the book
    // "Matrix Computations" by Gene H. Golub and Charles F. Van Loan, second
    // edition.  The algorithm is 8.2.3.  The implementation has a slight
    // variation to actually make it a QL algorithm, and it traps the case
    // when either of the subdiagonal terms s0 or s1 is zero and reduces the
    // 2-by-2 subblock directly.

    const int iMax = 32;
    for (int i = 0; i < iMax; i++)
    {
        Real fSum, fDiff, fDiscr, fEValue0, fEValue1, fCos, fSin, fTmp;
        int iRow;

        fSum = Math<Real>::FAbs(afDiag[0]) + Math<Real>::FAbs(afDiag[1]);
        if (Math<Real>::FAbs(afSubd[0]) + fSum == fSum)
        {
            // The matrix is effectively
            //       +-        -+
            //   M = | d0  0  0 |
            //       | 0  d1 s1 |
            //       | 0  s1 d2 |
            //       +-        -+

            // Compute the eigenvalues as roots of a quadratic equation.
            fSum = afDiag[1] + afDiag[2];
            fDiff = afDiag[1] - afDiag[2];
            fDiscr = Math<Real>::Sqrt(fDiff*fDiff +
                ((Real)4.0)*afSubd[1]*afSubd[1]);
            fEValue0 = ((Real)0.5)*(fSum - fDiscr);
            fEValue1 = ((Real)0.5)*(fSum + fDiscr);

            // Compute the Givens rotation.
            if (fDiff >= (Real)0.0)
            {
                fCos = afSubd[1];
                fSin = afDiag[1] - fEValue0;
            }
            else
            {
                fCos = afDiag[2] - fEValue0;
                fSin = afSubd[1];
            }
            fTmp = Math<Real>::InvSqrt(fCos*fCos + fSin*fSin);
            fCos *= fTmp;
            fSin *= fTmp;

            // Postmultiply the current orthogonal matrix with the Givens
            // rotation.
            for (iRow = 0; iRow < 3; iRow++)
            {
                fTmp = m_afEntry[2+3*iRow];
                m_afEntry[2+3*iRow] = fSin*m_afEntry[1+3*iRow] + fCos*fTmp;
                m_afEntry[1+3*iRow] = fCos*m_afEntry[1+3*iRow] - fSin*fTmp;
            }

            // Update the tridiagonal matrix.
            afDiag[1] = fEValue0;
            afDiag[2] = fEValue1;
            afSubd[0] = (Real)0.0;
            afSubd[1] = (Real)0.0;
            return true;
        }

        fSum = Math<Real>::FAbs(afDiag[1]) + Math<Real>::FAbs(afDiag[2]);
        if (Math<Real>::FAbs(afSubd[1]) + fSum == fSum)
        {
            // The matrix is effectively
            //       +-         -+
            //   M = | d0  s0  0 |
            //       | s0  d1  0 |
            //       | 0   0  d2 |
            //       +-         -+

            // Compute the eigenvalues as roots of a quadratic equation.
            fSum = afDiag[0] + afDiag[1];
            fDiff = afDiag[0] - afDiag[1];
            fDiscr = Math<Real>::Sqrt(fDiff*fDiff +
                ((Real)4.0)*afSubd[0]*afSubd[0]);
            fEValue0 = ((Real)0.5)*(fSum - fDiscr);
            fEValue1 = ((Real)0.5)*(fSum + fDiscr);

            // Compute the Givens rotation.
            if (fDiff >= (Real)0.0)
            {
                fCos = afSubd[0];
                fSin = afDiag[0] - fEValue0;
            }
            else
            {
                fCos = afDiag[1] - fEValue0;
                fSin = afSubd[0];
            }
            fTmp = Math<Real>::InvSqrt(fCos*fCos + fSin*fSin);
            fCos *= fTmp;
            fSin *= fTmp;

            // Postmultiply the current orthogonal matrix with the Givens
            // rotation.
            for (iRow = 0; iRow < 3; iRow++)
            {
                fTmp = m_afEntry[1+3*iRow];
                m_afEntry[1+3*iRow] = fSin*m_afEntry[0+3*iRow] + fCos*fTmp;
                m_afEntry[0+3*iRow] = fCos*m_afEntry[0+3*iRow] - fSin*fTmp;
            }

            // Update the tridiagonal matrix.
            afDiag[0] = fEValue0;
            afDiag[1] = fEValue1;
            afSubd[0] = (Real)0.0;
            afSubd[1] = (Real)0.0;
            return true;
        }

        // The matrix is
        //       +-        -+
        //   M = | d0 s0  0 |
        //       | s0 d1 s1 |
        //       | 0  s1 d2 |
        //       +-        -+

        // Set up the parameters for the first pass of the QL step.  The
        // value for A is the difference between diagonal term D[2] and the
        // implicit shift suggested by Wilkinson.
        Real fRatio = (afDiag[1]-afDiag[0])/(((Real)2.0f)*afSubd[0]);
        Real fRoot = Math<Real>::Sqrt((Real)1.0 + fRatio*fRatio);
        Real fB = afSubd[1];
        Real fA = afDiag[2] - afDiag[0];
        if (fRatio >= (Real)0.0)
        {
            fA += afSubd[0]/(fRatio + fRoot);
        }
        else
        {
            fA += afSubd[0]/(fRatio - fRoot);
        }

        // Compute the Givens rotation for the first pass.
        if (Math<Real>::FAbs(fB) >= Math<Real>::FAbs(fA))
        {
            fRatio = fA/fB;
            fSin = Math<Real>::InvSqrt((Real)1.0 + fRatio*fRatio);
            fCos = fRatio*fSin;
        }
        else
        {
            fRatio = fB/fA;
            fCos = Math<Real>::InvSqrt((Real)1.0 + fRatio*fRatio);
            fSin = fRatio*fCos;
        }

        // Postmultiply the current orthogonal matrix with the Givens
        // rotation.
        for (iRow = 0; iRow < 3; iRow++)
        {
            fTmp = m_afEntry[2+3*iRow];
            m_afEntry[2+3*iRow] = fSin*m_afEntry[1+3*iRow]+fCos*fTmp;
            m_afEntry[1+3*iRow] = fCos*m_afEntry[1+3*iRow]-fSin*fTmp;
        }

        // Set up the parameters for the second pass of the QL step.  The
        // values tmp0 and tmp1 are required to fully update the tridiagonal
        // matrix at the end of the second pass.
        Real fTmp0 = (afDiag[1] - afDiag[2])*fSin +
            ((Real)2.0)*afSubd[1]*fCos;
        Real fTmp1 = fCos*afSubd[0];
        fB = fSin*afSubd[0];
        fA = fCos*fTmp0 - afSubd[1];
        fTmp0 *= fSin;

        // Compute the Givens rotation for the second pass.  The subdiagonal
        // term S[1] in the tridiagonal matrix is updated at this time.
        if (Math<Real>::FAbs(fB) >= Math<Real>::FAbs(fA))
        {
            fRatio = fA/fB;
            fRoot = Math<Real>::Sqrt((Real)1.0 + fRatio*fRatio);
            afSubd[1] = fB*fRoot;
            fSin = ((Real)1.0)/fRoot;
            fCos = fRatio*fSin;
        }
        else
        {
            fRatio = fB/fA;
            fRoot = Math<Real>::Sqrt((Real)1.0 + fRatio*fRatio);
            afSubd[1] = fA*fRoot;
            fCos = ((Real)1.0)/fRoot;
            fSin = fRatio*fCos;
        }

        // Postmultiply the current orthogonal matrix with the Givens
        // rotation.
        for (iRow = 0; iRow < 3; iRow++)
        {
            fTmp = m_afEntry[1+3*iRow];
            m_afEntry[1+3*iRow] = fSin*m_afEntry[0+3*iRow]+fCos*fTmp;
            m_afEntry[0+3*iRow] = fCos*m_afEntry[0+3*iRow]-fSin*fTmp;
        }

        // Complete the update of the tridiagonal matrix.
        Real fTmp2 = afDiag[1] - fTmp0;
        afDiag[2] += fTmp0;
        fTmp0 = (afDiag[0] - fTmp2)*fSin + ((Real)2.0)*fTmp1*fCos;
        afSubd[0] = fCos*fTmp0 - fTmp1;
        fTmp0 *= fSin;
        afDiag[1] = fTmp2 + fTmp0;
        afDiag[0] -= fTmp0;
    }
    return false;
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::Bidiagonalize (Matrix3& rkA, Matrix3& rkL, Matrix3& rkR)
{
    Real afV[3], afW[3];
    Real fLength, fSign, fT1, fInvT1, fT2;
    bool bIdentity;

    // map first column to (*,0,0)
    fLength = Math<Real>::Sqrt(rkA[0][0]*rkA[0][0] + rkA[1][0]*rkA[1][0] +
        rkA[2][0]*rkA[2][0]);
    if (fLength > (Real)0.0)
    {
        fSign = (rkA[0][0] > (Real)0.0 ? (Real)1.0 : -(Real)1.0);
        fT1 = rkA[0][0] + fSign*fLength;
        fInvT1 = ((Real)1.0)/fT1;
        afV[1] = rkA[1][0]*fInvT1;
        afV[2] = rkA[2][0]*fInvT1;

        fT2 = -((Real)2.0)/(((Real)1.0)+afV[1]*afV[1]+afV[2]*afV[2]);
        afW[0] = fT2*(rkA[0][0]+rkA[1][0]*afV[1]+rkA[2][0]*afV[2]);
        afW[1] = fT2*(rkA[0][1]+rkA[1][1]*afV[1]+rkA[2][1]*afV[2]);
        afW[2] = fT2*(rkA[0][2]+rkA[1][2]*afV[1]+rkA[2][2]*afV[2]);
        rkA[0][0] += afW[0];
        rkA[0][1] += afW[1];
        rkA[0][2] += afW[2];
        rkA[1][1] += afV[1]*afW[1];
        rkA[1][2] += afV[1]*afW[2];
        rkA[2][1] += afV[2]*afW[1];
        rkA[2][2] += afV[2]*afW[2];

        rkL[0][0] = ((Real)1.0)+fT2;
        rkL[0][1] = fT2*afV[1];
        rkL[1][0] = rkL[0][1];
        rkL[0][2] = fT2*afV[2];
        rkL[2][0] = rkL[0][2];
        rkL[1][1] = ((Real)1.0)+fT2*afV[1]*afV[1];
        rkL[1][2] = fT2*afV[1]*afV[2];
        rkL[2][1] = rkL[1][2];
        rkL[2][2] = ((Real)1.0)+fT2*afV[2]*afV[2];
        bIdentity = false;
    }
    else
    {
        rkL = Matrix3::IDENTITY;
        bIdentity = true;
    }

    // map first row to (*,*,0)
    fLength = Math<Real>::Sqrt(rkA[0][1]*rkA[0][1]+rkA[0][2]*rkA[0][2]);
    if (fLength > (Real)0.0)
    {
        fSign = (rkA[0][1] > (Real)0.0 ? (Real)1.0 : -(Real)1.0);
        fT1 = rkA[0][1] + fSign*fLength;
        afV[2] = rkA[0][2]/fT1;

        fT2 = -((Real)2.0)/(((Real)1.0)+afV[2]*afV[2]);
        afW[0] = fT2*(rkA[0][1]+rkA[0][2]*afV[2]);
        afW[1] = fT2*(rkA[1][1]+rkA[1][2]*afV[2]);
        afW[2] = fT2*(rkA[2][1]+rkA[2][2]*afV[2]);
        rkA[0][1] += afW[0];
        rkA[1][1] += afW[1];
        rkA[1][2] += afW[1]*afV[2];
        rkA[2][1] += afW[2];
        rkA[2][2] += afW[2]*afV[2];
        
        rkR[0][0] = (Real)1.0;
        rkR[0][1] = (Real)0.0;
        rkR[1][0] = (Real)0.0;
        rkR[0][2] = (Real)0.0;
        rkR[2][0] = (Real)0.0;
        rkR[1][1] = ((Real)1.0)+fT2;
        rkR[1][2] = fT2*afV[2];
        rkR[2][1] = rkR[1][2];
        rkR[2][2] = ((Real)1.0)+fT2*afV[2]*afV[2];
    }
    else
    {
        rkR = Matrix3::IDENTITY;
    }

    // map second column to (*,*,0)
    fLength = Math<Real>::Sqrt(rkA[1][1]*rkA[1][1]+rkA[2][1]*rkA[2][1]);
    if (fLength > (Real)0.0)
    {
        fSign = (rkA[1][1] > (Real)0.0 ? (Real)1.0 : -(Real)1.0);
        fT1 = rkA[1][1] + fSign*fLength;
        afV[2] = rkA[2][1]/fT1;

        fT2 = -((Real)2.0)/(((Real)1.0)+afV[2]*afV[2]);
        afW[1] = fT2*(rkA[1][1]+rkA[2][1]*afV[2]);
        afW[2] = fT2*(rkA[1][2]+rkA[2][2]*afV[2]);
        rkA[1][1] += afW[1];
        rkA[1][2] += afW[2];
        rkA[2][2] += afV[2]*afW[2];

        Real fA = ((Real)1.0)+fT2;
        Real fB = fT2*afV[2];
        Real fC = ((Real)1.0)+fB*afV[2];

        if (bIdentity)
        {
            rkL[0][0] = (Real)1.0;
            rkL[0][1] = (Real)0.0;
            rkL[1][0] = (Real)0.0;
            rkL[0][2] = (Real)0.0;
            rkL[2][0] = (Real)0.0;
            rkL[1][1] = fA;
            rkL[1][2] = fB;
            rkL[2][1] = fB;
            rkL[2][2] = fC;
        }
        else
        {
            for (int iRow = 0; iRow < 3; iRow++)
            {
                Real fTmp0 = rkL[iRow][1];
                Real fTmp1 = rkL[iRow][2];
                rkL[iRow][1] = fA*fTmp0+fB*fTmp1;
                rkL[iRow][2] = fB*fTmp0+fC*fTmp1;
            }
        }
    }
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::GolubKahanStep (Matrix3& rkA, Matrix3& rkL, Matrix3& rkR)
{
    Real fT11 = rkA[0][1]*rkA[0][1]+rkA[1][1]*rkA[1][1];
    Real fT22 = rkA[1][2]*rkA[1][2]+rkA[2][2]*rkA[2][2];
    Real fT12 = rkA[1][1]*rkA[1][2];
    Real fTrace = fT11+fT22;
    Real fDiff = fT11-fT22;
    Real fDiscr = Math<Real>::Sqrt(fDiff*fDiff+((Real)4.0)*fT12*fT12);
    Real fRoot1 = ((Real)0.5)*(fTrace+fDiscr);
    Real fRoot2 = ((Real)0.5)*(fTrace-fDiscr);

    // adjust right
    Real fY = rkA[0][0] - (Math<Real>::FAbs(fRoot1-fT22) <=
        Math<Real>::FAbs(fRoot2-fT22) ? fRoot1 : fRoot2);
    Real fZ = rkA[0][1];
    Real fInvLength = Math<Real>::InvSqrt(fY*fY+fZ*fZ);
    Real fSin = fZ*fInvLength;
    Real fCos = -fY*fInvLength;

    Real fTmp0 = rkA[0][0];
    Real fTmp1 = rkA[0][1];
    rkA[0][0] = fCos*fTmp0-fSin*fTmp1;
    rkA[0][1] = fSin*fTmp0+fCos*fTmp1;
    rkA[1][0] = -fSin*rkA[1][1];
    rkA[1][1] *= fCos;

    int iRow;
    for (iRow = 0; iRow < 3; iRow++)
    {
        fTmp0 = rkR[0][iRow];
        fTmp1 = rkR[1][iRow];
        rkR[0][iRow] = fCos*fTmp0-fSin*fTmp1;
        rkR[1][iRow] = fSin*fTmp0+fCos*fTmp1;
    }

    // adjust left
    fY = rkA[0][0];
    fZ = rkA[1][0];
    fInvLength = Math<Real>::InvSqrt(fY*fY+fZ*fZ);
    fSin = fZ*fInvLength;
    fCos = -fY*fInvLength;

    rkA[0][0] = fCos*rkA[0][0]-fSin*rkA[1][0];
    fTmp0 = rkA[0][1];
    fTmp1 = rkA[1][1];
    rkA[0][1] = fCos*fTmp0-fSin*fTmp1;
    rkA[1][1] = fSin*fTmp0+fCos*fTmp1;
    rkA[0][2] = -fSin*rkA[1][2];
    rkA[1][2] *= fCos;

    int iCol;
    for (iCol = 0; iCol < 3; iCol++)
    {
        fTmp0 = rkL[iCol][0];
        fTmp1 = rkL[iCol][1];
        rkL[iCol][0] = fCos*fTmp0-fSin*fTmp1;
        rkL[iCol][1] = fSin*fTmp0+fCos*fTmp1;
    }

    // adjust right
    fY = rkA[0][1];
    fZ = rkA[0][2];
    fInvLength = Math<Real>::InvSqrt(fY*fY+fZ*fZ);
    fSin = fZ*fInvLength;
    fCos = -fY*fInvLength;

    rkA[0][1] = fCos*rkA[0][1]-fSin*rkA[0][2];
    fTmp0 = rkA[1][1];
    fTmp1 = rkA[1][2];
    rkA[1][1] = fCos*fTmp0-fSin*fTmp1;
    rkA[1][2] = fSin*fTmp0+fCos*fTmp1;
    rkA[2][1] = -fSin*rkA[2][2];
    rkA[2][2] *= fCos;

    for (iRow = 0; iRow < 3; iRow++)
    {
        fTmp0 = rkR[1][iRow];
        fTmp1 = rkR[2][iRow];
        rkR[1][iRow] = fCos*fTmp0-fSin*fTmp1;
        rkR[2][iRow] = fSin*fTmp0+fCos*fTmp1;
    }

    // adjust left
    fY = rkA[1][1];
    fZ = rkA[2][1];
    fInvLength = Math<Real>::InvSqrt(fY*fY+fZ*fZ);
    fSin = fZ*fInvLength;
    fCos = -fY*fInvLength;

    rkA[1][1] = fCos*rkA[1][1]-fSin*rkA[2][1];
    fTmp0 = rkA[1][2];
    fTmp1 = rkA[2][2];
    rkA[1][2] = fCos*fTmp0-fSin*fTmp1;
    rkA[2][2] = fSin*fTmp0+fCos*fTmp1;

    for (iCol = 0; iCol < 3; iCol++)
    {
        fTmp0 = rkL[iCol][1];
        fTmp1 = rkL[iCol][2];
        rkL[iCol][1] = fCos*fTmp0-fSin*fTmp1;
        rkL[iCol][2] = fSin*fTmp0+fCos*fTmp1;
    }
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::SingularValueDecomposition (Matrix3& rkL, Matrix3& rkS,
    Matrix3& rkR) const
{
    int iRow, iCol;

    Matrix3 kA = *this;
    Bidiagonalize(kA,rkL,rkR);
    rkS.MakeZero();

    const int iMax = 32;
    const Real fEpsilon = (Real)1e-04;
    for (int i = 0; i < iMax; i++)
    {
        Real fTmp, fTmp0, fTmp1;
        Real fSin0, fCos0, fTan0;
        Real fSin1, fCos1, fTan1;

        bool bTest1 = (Math<Real>::FAbs(kA[0][1]) <=
            fEpsilon*(Math<Real>::FAbs(kA[0][0]) +
            Math<Real>::FAbs(kA[1][1])));
        bool bTest2 = (Math<Real>::FAbs(kA[1][2]) <=
            fEpsilon*(Math<Real>::FAbs(kA[1][1]) +
            Math<Real>::FAbs(kA[2][2])));
        if (bTest1)
        {
            if (bTest2)
            {
                rkS[0][0] = kA[0][0];
                rkS[1][1] = kA[1][1];
                rkS[2][2] = kA[2][2];
                break;
            }
            else
            {
                // 2x2 closed form factorization
                fTmp = (kA[1][1]*kA[1][1] - kA[2][2]*kA[2][2] +
                    kA[1][2]*kA[1][2])/(kA[1][2]*kA[2][2]);
                fTan0 = ((Real)0.5)*(fTmp + Math<Real>::Sqrt(fTmp*fTmp +
                    ((Real)4.0)));
                fCos0 = Math<Real>::InvSqrt(((Real)1.0)+fTan0*fTan0);
                fSin0 = fTan0*fCos0;

                for (iCol = 0; iCol < 3; iCol++)
                {
                    fTmp0 = rkL[iCol][1];
                    fTmp1 = rkL[iCol][2];
                    rkL[iCol][1] = fCos0*fTmp0-fSin0*fTmp1;
                    rkL[iCol][2] = fSin0*fTmp0+fCos0*fTmp1;
                }
                
                fTan1 = (kA[1][2]-kA[2][2]*fTan0)/kA[1][1];
                fCos1 = Math<Real>::InvSqrt(((Real)1.0)+fTan1*fTan1);
                fSin1 = -fTan1*fCos1;

                for (iRow = 0; iRow < 3; iRow++)
                {
                    fTmp0 = rkR[1][iRow];
                    fTmp1 = rkR[2][iRow];
                    rkR[1][iRow] = fCos1*fTmp0-fSin1*fTmp1;
                    rkR[2][iRow] = fSin1*fTmp0+fCos1*fTmp1;
                }

                rkS[0][0] = kA[0][0];
                rkS[1][1] = fCos0*fCos1*kA[1][1] -
                    fSin1*(fCos0*kA[1][2]-fSin0*kA[2][2]);
                rkS[2][2] = fSin0*fSin1*kA[1][1] +
                    fCos1*(fSin0*kA[1][2]+fCos0*kA[2][2]);
                break;
            }
        }
        else 
        {
            if (bTest2)
            {
                // 2x2 closed form factorization 
                fTmp = (kA[0][0]*kA[0][0] + kA[1][1]*kA[1][1] -
                    kA[0][1]*kA[0][1])/(kA[0][1]*kA[1][1]);
                fTan0 = ((Real)0.5)*(-fTmp + Math<Real>::Sqrt(fTmp*fTmp +
                    ((Real)4.0)));
                fCos0 = Math<Real>::InvSqrt(((Real)1.0)+fTan0*fTan0);
                fSin0 = fTan0*fCos0;

                for (iCol = 0; iCol < 3; iCol++)
                {
                    fTmp0 = rkL[iCol][0];
                    fTmp1 = rkL[iCol][1];
                    rkL[iCol][0] = fCos0*fTmp0-fSin0*fTmp1;
                    rkL[iCol][1] = fSin0*fTmp0+fCos0*fTmp1;
                }
                
                fTan1 = (kA[0][1]-kA[1][1]*fTan0)/kA[0][0];
                fCos1 = Math<Real>::InvSqrt(((Real)1.0)+fTan1*fTan1);
                fSin1 = -fTan1*fCos1;

                for (iRow = 0; iRow < 3; iRow++)
                {
                    fTmp0 = rkR[0][iRow];
                    fTmp1 = rkR[1][iRow];
                    rkR[0][iRow] = fCos1*fTmp0-fSin1*fTmp1;
                    rkR[1][iRow] = fSin1*fTmp0+fCos1*fTmp1;
                }

                rkS[0][0] = fCos0*fCos1*kA[0][0] -
                    fSin1*(fCos0*kA[0][1]-fSin0*kA[1][1]);
                rkS[1][1] = fSin0*fSin1*kA[0][0] +
                    fCos1*(fSin0*kA[0][1]+fCos0*kA[1][1]);
                rkS[2][2] = kA[2][2];
                break;
            }
            else
            {
                GolubKahanStep(kA,rkL,rkR);
            }
        }
    }

    // positize diagonal
    for (iRow = 0; iRow < 3; iRow++)
    {
        if (rkS[iRow][iRow] < (Real)0.0)
        {
            rkS[iRow][iRow] = -rkS[iRow][iRow];
            for (iCol = 0; iCol < 3; iCol++)
                rkR[iRow][iCol] = -rkR[iRow][iCol];
        }
    }
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::SingularValueComposition (const Matrix3& rkL,
    const Matrix3& rkS, const Matrix3& rkR)
{
    *this = rkL*(rkS*rkR);
}
//----------------------------------------------------------------------------
template <class Real>
void Matrix3<Real>::QDUDecomposition (Matrix3& rkQ, Matrix3& rkD,
    Matrix3& rkU) const
{
    // Factor M = QR = QDU where Q is orthogonal (rotation), D is diagonal
    // (scaling),  and U is upper triangular with ones on its diagonal
    // (shear).  Algorithm uses Gram-Schmidt orthogonalization (the QR
    // algorithm).
    //
    // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then
    //
    //   q0 = m0/|m0|
    //   q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
    //   q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
    //
    // where |V| indicates length of vector V and A*B indicates dot
    // product of vectors A and B.  The matrix R has entries
    //
    //   r00 = q0*m0  r01 = q0*m1  r02 = q0*m2
    //   r10 = 0      r11 = q1*m1  r12 = q1*m2
    //   r20 = 0      r21 = 0      r22 = q2*m2
    //
    // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00,
    // u02 = r02/r00, and u12 = r12/r11.

    // build orthogonal matrix Q
    Real fInvLength = Math<Real>::InvSqrt(m_afEntry[0]*m_afEntry[0] +
        m_afEntry[3]*m_afEntry[3] + m_afEntry[6]*m_afEntry[6]);
    rkQ[0][0] = m_afEntry[0]*fInvLength;
    rkQ[1][0] = m_afEntry[3]*fInvLength;
    rkQ[2][0] = m_afEntry[6]*fInvLength;

    Real fDot = rkQ[0][0]*m_afEntry[1] + rkQ[1][0]*m_afEntry[4] +
        rkQ[2][0]*m_afEntry[7];
    rkQ[0][1] = m_afEntry[1]-fDot*rkQ[0][0];
    rkQ[1][1] = m_afEntry[4]-fDot*rkQ[1][0];
    rkQ[2][1] = m_afEntry[7]-fDot*rkQ[2][0];
    fInvLength = Math<Real>::InvSqrt(rkQ[0][1]*rkQ[0][1] +
        rkQ[1][1]*rkQ[1][1] + rkQ[2][1]*rkQ[2][1]);
    rkQ[0][1] *= fInvLength;
    rkQ[1][1] *= fInvLength;
    rkQ[2][1] *= fInvLength;

    fDot = rkQ[0][0]*m_afEntry[2] + rkQ[1][0]*m_afEntry[5] +
        rkQ[2][0]*m_afEntry[8];
    rkQ[0][2] = m_afEntry[2]-fDot*rkQ[0][0];
    rkQ[1][2] = m_afEntry[5]-fDot*rkQ[1][0];
    rkQ[2][2] = m_afEntry[8]-fDot*rkQ[2][0];
    fDot = rkQ[0][1]*m_afEntry[2] + rkQ[1][1]*m_afEntry[5] +
        rkQ[2][1]*m_afEntry[8];
    rkQ[0][2] -= fDot*rkQ[0][1];
    rkQ[1][2] -= fDot*rkQ[1][1];
    rkQ[2][2] -= fDot*rkQ[2][1];
    fInvLength = Math<Real>::InvSqrt(rkQ[0][2]*rkQ[0][2] +
        rkQ[1][2]*rkQ[1][2] + rkQ[2][2]*rkQ[2][2]);
    rkQ[0][2] *= fInvLength;
    rkQ[1][2] *= fInvLength;
    rkQ[2][2] *= fInvLength;

    // guarantee that orthogonal matrix has determinant 1 (no reflections)
    Real fDet = rkQ[0][0]*rkQ[1][1]*rkQ[2][2] + rkQ[0][1]*rkQ[1][2]*rkQ[2][0]
        +  rkQ[0][2]*rkQ[1][0]*rkQ[2][1] - rkQ[0][2]*rkQ[1][1]*rkQ[2][0]
        -  rkQ[0][1]*rkQ[1][0]*rkQ[2][2] - rkQ[0][0]*rkQ[1][2]*rkQ[2][1];

    if (fDet < (Real)0.0)
    {
        for (int iRow = 0; iRow < 3; iRow++)
        {
            for (int iCol = 0; iCol < 3; iCol++)
            {
                rkQ[iRow][iCol] = -rkQ[iRow][iCol];
            }
        }
    }

    // build "right" matrix R
    Matrix3 kR;
    kR[0][0] = rkQ[0][0]*m_afEntry[0] + rkQ[1][0]*m_afEntry[3] +
        rkQ[2][0]*m_afEntry[6];
    kR[0][1] = rkQ[0][0]*m_afEntry[1] + rkQ[1][0]*m_afEntry[4] +
        rkQ[2][0]*m_afEntry[7];
    kR[1][1] = rkQ[0][1]*m_afEntry[1] + rkQ[1][1]*m_afEntry[4] +
        rkQ[2][1]*m_afEntry[7];
    kR[0][2] = rkQ[0][0]*m_afEntry[2] + rkQ[1][0]*m_afEntry[5] +
        rkQ[2][0]*m_afEntry[8];
    kR[1][2] = rkQ[0][1]*m_afEntry[2] + rkQ[1][1]*m_afEntry[5] +
        rkQ[2][1]*m_afEntry[8];
    kR[2][2] = rkQ[0][2]*m_afEntry[2] + rkQ[1][2]*m_afEntry[5] +
        rkQ[2][2]*m_afEntry[8];

    // the scaling component
    rkD.MakeDiagonal(kR[0][0],kR[1][1],kR[2][2]);

    // the shear component
    Real fInvD0 = ((Real)1.0)/rkD[0][0];
    rkU[0][0] = (Real)1.0;
    rkU[0][1] = kR[0][1]*fInvD0;
    rkU[0][2] = kR[0][2]*fInvD0;
    rkU[1][0] = (Real)0.0;
    rkU[1][1] = (Real)1.0;
    rkU[1][2] = kR[1][2]/rkD[1][1];
    rkU[2][0] = (Real)0.0;
    rkU[2][1] = (Real)0.0;
    rkU[2][2] = (Real)1.0;
}
//----------------------------------------------------------------------------
template <class Real>
Matrix3<Real> operator* (Real fScalar, const Matrix3<Real>& rkM)
{
    return rkM*fScalar;
}
//----------------------------------------------------------------------------
template <class Real>
Vector3<Real> operator* (const Vector3<Real>& rkV, const Matrix3<Real>& rkM)
{
    return Vector3<Real>(
        rkV[0]*rkM[0][0] + rkV[1]*rkM[1][0] + rkV[2]*rkM[2][0],
        rkV[0]*rkM[0][1] + rkV[1]*rkM[1][1] + rkV[2]*rkM[2][1],
        rkV[0]*rkM[0][2] + rkV[1]*rkM[1][2] + rkV[2]*rkM[2][2]);
}
//----------------------------------------------------------------------------

Generated by  Doxygen 1.6.0   Back to index